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Abstract
1. Under global change, there is an urgent need to forecast the dynamics of establish-

ing tree populations. However, tree population dynamics are slow and historical 
data on these dynamics are rare. This raises the question whether tree population 
dynamics can be reconstructed from data collected at a single time point. Doing 
so poses challenges for modelling, data collection and model- data integration.

2. We present a Bayesian framework that uses multiple data types to parametrize 
an individual- based model (IBM) for the growth of establishing tree populations. 
The framework combines likelihood- based Bayesian inference and approximate 
Bayesian computation (ABC). Using this framework, we assess the information 
content of three data types (recruitment data, dendrochronological data describ-
ing individual growth and molecular markers characterizing within- population 
pedigrees) by comparing the bias and uncertainty of parameter estimates and 
model forecasts obtained under different simulated scenarios of data availability.

3. The combination of all data types leads to accurate forecasts of the future state 
of tree populations, despite large uncertainties in some parameter estimates. 
Dendrochronological data were the most informative of the examined data types. 
Combining data types improved forecasts of population state. Nevertheless, for 
a given parameter related to a given process, combining data types did not im-
prove estimates compared to using only the data type most closely related to the 
process.

4. The presented Bayesian framework allows to infer the dynamics of establishing 
tree populations from data collected at a single time point. It helps to optimally 
allocate limited resources for data collection in order to rapidly improve the un-
derstanding and forecasting of tree population dynamics.
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1  | INTRODUC TION

Forecasting the dynamics of non- equilibrium populations is of 
prime interest in the context of global change. In particular, the dy-
namics of establishing tree populations play a key role for phenom-
ena as diverse as the spread of invasive tree species (Chornesky 
et al., 2006), the migration of tree species under climate change 
(Nathan et al., 2011), biome shifts from tundra to boreal forests 
or from grasslands to woodlands (Frost & Epstein, 2014) and car-
bon sequestration (Bastin et al., 2019). Tree population dynamics 
are also critical in the context of land use abandonment which can 
lead to the emergence of new forests (Lira et al., 2012) and for-
est recolonization in fragmented landscapes (Palmero- Iniesta et al., 
2020). Assessing and ultimately managing these multiple facets of 
tree population dynamics under global change require a thorough 
understanding of forest establishment and its underlying ecologi-
cal mechanisms, as well as reliable forecasts of tree population dy-
namics. This leads to challenges for modelling, data collection and 
model- data integration.

Modelling the dynamics of establishing tree populations is chal-
lenging because the demographic processes driving these dynam-
ics (individual growth, fecundity, dispersal, recruitment, mortality) 
are size dependent and thus strongly vary among individuals in a 
population. Moreover, individuals interact with each other via 
distance- dependent processes such as gene flow and competition 
for resources. Individual- based models (IBMs) can describe the re-
sulting feedbacks between the demographic performance of individ-
uals and the spatial and size structure of populations (Grimm et al., 
2005). Hence, IBMs are well suited for modelling the dynamics of 
tree populations.

Forecasts of tree population dynamics require not only mod-
els but also informative data (Clark et al., 2001). In particular, 
time series of tree population size structure need to be long 
enough to cover the long generation times of trees. Hence, when 
historical data on tree populations are lacking, it is an open ques-
tion whether— within a short time period— one can collect suffi-
cient data for inferring their past dynamics and forecasting their 
future dynamics. This may be feasible since several data types 
contain information about the past dynamics of tree populations 

(Grimm et al., 2005). Of particular importance are data on size 
distribution and spatial structure of populations, dendrochro-
nological data on annual growth increments of individual trees, 
data on tree fecundity and recruitment as well as ‘genetic data’ 
on molecular polymorphic markers that can be used for genotyp-
ing individuals and reconstructing pedigrees. For instance, rates 
of individual growth and competition can be inferred by relating 
dendrochronological data on annual growth increments of indi-
vidual trees to the spatial structure of the tree stand (Canham 
et al., 2004; Lamonica et al., 2020). Seed production, seed dis-
persal and seedling recruitment can be estimated by relating re-
cruitment data on spatial variation in seedling density to the size 
distribution and spatial structure of adult trees (Uriarte et al., 
2005; Schurr et al., 2008). Additionally, high- resolution molec-
ular markers have been used to infer within- population pedi-
grees that quantify effective pollen and seed production as well 
as rates of pollen (Klein et al., 2011) and seed dispersal (Klein 
et al., 2013). These data types differ in the time, material costs 
and skills required for data collection and analysis (Table 1). To 
design efficient data collection, it is thus important to quantify 
the amount of information that each data type provides for fore-
casting population dynamics.

The final challenge to predicting and forecasting tree popula-
tion dynamics is the integration of suitable models (notably IBMs) 
with multiple data types. IBM parametrization still widely uses a 
‘piecemeal’ approach, in which different submodels are parame-
trized independently (Clark & Gelfand, 2006; Moran & Clark, 2011). 
Bayesian inference allows the use of multiple data types, col-
lected at different scales, as well as the simultaneous estimation 
of all parameters (Gopalaswamy et al., 2012; Lamonica et al., 2016). 
Bayesian approaches to inference typically depend on having ex-
plicit functional forms for the likelihood. However, commonly used 
likelihood- based methods of parameter estimation are difficult to 
apply to IBMs, because the likelihood functions of stochastic IBMs 
usually cannot be calculated explicitly (Hartig et al., 2011, 2014). 
Alternatively, approximate Bayesian computation (ABC) methods 
(Beaumont, 2018) use model simulations instead of likelihood com-
putations, and are becoming more and more popular in the field 
of ecology (Csilléry et al., 2010; Hartig et al., 2011). ABC has also 

TA B L E  1   Data types that can be collected at a single time point to parametrize an IBM of tree population establishment

Data Notation Field time
Lab and analysis 
time Material costs Skills

Size distribution and spatial structure (base scenario) Base Low Low Low Low

Genetic G Low High High High

Recruitment R High Low Low Low

Dendrochronological D Low High Low High

Notes. For each data type, the table gives a qualitative estimate of time investment, material costs and skills required for data collection and analysis. 
Time indications: personal communications of D. Bert, G. Gerzabek and E. Valdes- Correcher, based on the sample of 15 populations of Quercus robur 
L. with mean patch area of 2,500 m2 and mean population size of 50 individuals, data being collected in the field and analysed in the laboratory by 
one person.
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been applied to parametrize IBMs of tree population dynamics from 
historical forest inventory data (Hartig et al., 2014; Lagarrigues 
et al., 2015). However, the efficiency of ABC methods to parame-
trize IBMs of tree population dynamics from different data types 
remains to explore.

This paper has two aims: first, we develop a statistical framework 
that combines likelihood- based and ABC methods to parametrize an 
IBM of establishing tree populations which have not reached equi-
librium yet and in which the initial founder tree may still be alive. 
This framework can integrate multiple data types collected at a 
single time point (size distribution and spatial structure, genetic, re-
cruitment and dendrochronological data). Second, we quantify how 
informative these different data types are for understanding and 
forecasting tree population dynamics. These results provide guide-
lines for the optimal allocation of limited resources for data collec-
tion in order to improve the understanding and forecasting of tree 
population dynamics.

2  | MATERIAL S AND METHODS

We formulated an individual- based model (IBM) for the dynamics 
of an establishing tree population and then developed a statistical 
framework for the estimation of model parameters from combina-
tions of different data types (Figure 1). To test the framework and 
to quantify the amount of information provided by different data 
types, we used a ‘virtual ecologist’ approach (Zurell et al., 2010), 
collecting virtual data from simulated forest population dynamics. 
We consider the dynamics of an isolated establishing tree popula-
tion (Lamonica et al., 2020; Ruiz- Carbayo et al., 2020) focusing on 
establishment of a new forest patch rather than gradual forest ex-
pansion (Clark et al., 2001; Palmero- Iniesta et al., 2020). We applied 
the framework to a range of scenarios of data availability that rep-
resent different combinations of collected data types and evaluated 
the bias and uncertainty of parameter estimates and of forecast for-
est dynamics under each scenario. To each data type, we chose a 
best- case scenario in terms of data availability and quality. For data 
simulation, Bayesian model parametrization and forecasting we 
used R 3.4.4 (R Core Team, 2018). R Code is supplied as Supporting 
Information.

2.1 | Simulation model

2.1.1 | General overview

The individual- based, spatially explicit and grid- based model de-
scribes the dynamics of forest establishment within a patch. The grid 
is divided in square cells of 1 m2. Each tree is characterized by its po-
sition on the grid (the cell number ni), its mother and father tree and 
by its size, namely diameter at breast height (DBH) in a given time 
step, (x(i, t)). The following processes are modelled: growth, adult 
mortality, fecundity and pollen and seed dispersal, and seedling 

survival. The time step of the model is 1 year. The model structure is 
shown in Figure 1 and model parameters are listed in Table 2.

2.1.2 | Processes

Individual growth and competition
Annual tree growth depends both on the current tree size and com-
petition from neighbouring trees. The mean of the logarithm of the 
absolute growth rate �g (i, t) of individual i at time t is modelled fol-
lowing Uriarte et al. (2004):

with a1 the maximum growth rate, a2 the size at maximum growth rate, 
a3 the shape of the growth rate curve and b1 the sensitivity to compe-
tition. yc(i, t) is the sum of competition kernels depending on the dis-
tance Di,j between the focal individual i and its neighbour j and the size 
of the neighbour x(j, t) (Nottebrock et al., 2017):

with b2 the distance at which competition is 37% of maximum compe-
tition at zero distance.

The logarithm of growth increment yg (i, t) (cm/year) follows a 
normal distribution with mean �g (i, t) and standard deviation a4:

The size of individual i at the end of time step t is then:

Adult mortality
The probability �(i, t) that a tree i dies in year t depends on the tree’s 
current size x(i, t) (Hülsmann et al., 2018):

with c1 the logit− 1 regression intercept and c2 the logit− 1 regression 
linear coefficient. Whether individual i dies at the end of time step t 
follows a Bernoulli process with probability �(i, t).

Pollen production, pollen dispersal and ovule fertilization
The model describes the relative contribution of pollen from each 
parent in the population and pollen immigration from outside the 
population. These relative pollen contributions are the basis for as-
signing fatherhood, but we do not consider the total number of ferti-
lized seeds to be limited by pollen availability. The pollen production 

(1)�g (i, t)= log

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
a1×exp

⎛⎜⎜⎝
−1

2

ln
x(i,t)

a2

a3

⎞⎟⎟⎠

2 ⎞
⎟⎟⎟⎠
×exp(−b1×yc(i, t))

⎞
⎟⎟⎟⎠
,

(2)yc(i, t)=
∑J

j=1
x(j, t)×exp

(
−D2

i,j

b2
2

)
,

(3)log(yg (i, t))∼N(�g (i, t), a4),

(4)x(i, t+1)=x(i, t)+yg (i, t),

(5)�(i, t)=
exp(c1+c2× ln(x(i, t)))

1+exp(c1+c2× ln(x(i, t)))
,
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yp(i, t) of individual i at time t depends on current size x(i, t) and is set 
to 0 if the individual is smaller than the size at maturity d1:

with d2 the allometric exponent of the fecundity– size relationship.
Ovules cannot be self- fertilized. Ovule fertilization on a tree is 

a function of the distance to the neighbouring trees and their re-
spective pollen production. We use an exponential kernel (Klein 

et al., 2006) kp(i, j) to model pollen dispersal from individual i to a 
neighbour j:

with e1 the mean pollen dispersal distance. The relative contribu-
tion �(i, j, t) of pollen from individual i to the pollen cloud that can 
fertilize a seed of individual j at time t is:

(6)yp(i, t)=

⎧
⎪⎨⎪⎩

0 if x(i, t)<d1

x(i, t)d2 if x(i, t)>d1,

(7)kp(i, j)=
1

(2�e2
1
)
×exp

(
−Di,j

e1

)
,

(8)�(i, j, t)=yp(i, t)×kp(i, j).

F I G U R E  1   A Bayesian framework to parametrize an individual- based model (IBM) for the dynamics of establishing tree populations 
from data collected at a single time point. In a first step, submodels for recruitment and/or growth and competition are parametrized using 
likelihood- based Bayesian inference. Posterior parameter distributions of this first step then provide some of the priors for a second step in 
which the full IBM is parametrized with approximate Bayesian computation (ABC) methods using further data on size distribution and spatial 
structure as well as pedigrees. Note that the framework can either use only size distribution spatial structure data or it can combine these 
data with arbitrary combinations of the other data types (if dendrochronological and recruitment data are not used, the framework simplifies 
to classical ABC)

TA B L E  2   Parameters of an individual- based model for the dynamics of establishing tree populations with reference values used for 
simulating data and prior distributions used for Bayesian parameter estimation

Symbol Name Description Unit
Reference 
value Prior distribution

a1 Maximum growth rate Potential maximum DBH growth rate without 
competitors

cm/year 3 U(1, 5)

a2 Size at maximum growth Size (DBH) at maximum growth rate without 
competitors

cm 12 U(1.2, 30)

a3 Growth rate shape Shape of the growth rate- DBH relationship — 1.2 U(0.8, 2)

a4 Growth rate sd Standard deviation of log(absolute growth rate) — 0.08 log10(a4) ∼ U( − 2, 0)

b1 Sensitivity to competition — 0.02 log10(b1) ∼ U( − 2.7, − 0.7)

b2 Spatial scale of competition Inter- tree distance for which competition is 
37% of maximum competition

m 8 U(1, 20)

c1 Adult mortality intercept Logit− 1 regression intercept of adult mortality 
rate against size (DBH)

— 0.8 log10(c1) ∼ U( − 2.3, 0.7)

c2 Adult mortality slope Logit− 1 regression slope of adult mortality rate 
against size (DBH)

— − 3.5 U( − 8, − 2)

d1 Size at maturity Size (DBH) at which an individual starts 
producing seeds and pollen

cm 10 log10(d1) ∼ U(0.7, 1.8)

d2 Allometric exponent of fecundity– size relationship — 1.8 U(1, 2)

e1 Mean pollen dispersal 
distance

Mean of exponential pollen dispersal kernel m 50 U(20, 100)

e2 Mean seed dispersal 
distance

Mean of exponential seed dispersal kernel m 15 U(5, 25)

f1 Inverse seedling survival 
rate

Seed input per cell for which there is a 50% 
chance that a new tree establishes

Number 
of 
seed/m

700 log10(f1) ∼ U(2, 3.7)

g1 Immigrant pollen 
contribution

Amount of immigrant pollen received by each 
tree (expressed as a multiple of the pollen 
production of a mature tree with   
DBH = 1 cm)

— 0.12 log10(g1) ∼ U( − 2, 0)

g2 Immigrant seed 
contribution

Mean number of immigrant seeds per grid cell Number 
of seed

0.05 log10(g2) ∼ U( − 3, 0)

Note. U stands for the uniform distribution. DBH stands for diameter at breast height. Reference values and prior distributions were chosen to yield 
realistic forest dynamics.
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Each individual receives a constant amount of immigrant pollen 
from outside the population g1.

Seed production, seed dispersal and recruitment
For each grid cell, the model describes the contribution of seeds 
from each parent and seed immigration from outside the popu-
lation. As for pollen production, seed production ys(i, t) of indi-
vidual i at time t depends on current tree size x(i, t) and maturity 
threshold d1:

The number of seeds N(i, t) produced by individual i at time t fol-
lows a Poisson distribution with mean ys(i, t):

We use an exponential kernel (Klein et al., 2006) ks(i, n) to model 
seed dispersal from individual i to grid cell n

with e2 the mean seed dispersal distance and Di,n the distance be-
tween individual i and grid cell n.

The contribution of individual i to the seed pool of grid cell n is

where Di,n is the distance between individual i and cell n. Finally, we 
assume that all seeds in a grid cell become seedlings (if a lower propor-
tion of seeds became seedlings this would just alter the interpretation 
of seed production ys).

Seedling survival and parenthood assignment
In each empty grid cell that currently does not hold a tree, a maxi-
mum of one sapling can establish. Lottery competition is used to de-
termine which (if any) of the seedlings in the grid cell survives and 
becomes a new sapling (1 cm DBH).

The probability �(i, n, t) that a new tree in grid cell n at time step 
t originates from mother tree i is

with f1 the inverse seedling survival rate, i.e. the seedling number 
per cell for which there is a 50% chance that one seedling survives. 
The contribution of immigrant seeds to the seed pool is g2. Similarly, 
the probability that a new tree originates from immigrant seeds is 

�(n, t) =
g2

f1 +
∑

J
j = 1

�(j,n,t)+ g2
. The probability that no seedling survives and 

grid cell n remains empty is

The mother of a new tree is drawn from a multinomial distribution 
with the following probabilities for each potential mother tree in the 
population i and for seed immigration from outside the population 
(�(1, n, t), …, �(i, n, t), …, �(I, n, t), �(n, t)). For new trees with mother 
tree i inside the population, the father is drawn from a multinomial dis-
tribution with the following probabilities for each potential father tree 
j in the population and for pollen immigration from outside the popu-
lation (�(1, i, t), …, �(j, i, t), …, �(J, i, t), g1) (after normalization of the 
contributions � and g1) (Oddou- Muratorio Davi, 2014). We assume that 
new trees originating from immigrant seeds have both their mother 
and father outside the population.

2.2 | Virtual data collection

For virtual data collection, we simulated a population with param-
eters set to their reference values (Table 2) (Lamonica et al., 2021). 
The size of the plot was 55 m by 55 m. The model was initialized 
with one individual of 2 cm DBH randomly located on the grid. After 
running the simulation for 70 years, we recorded for each individual 
with a DBH >3 cm the size, location on the grid, absolute growth 
rates in each year, as well as the father and mother trees. We also 
recorded the number of seedlings per grid cell.

Simulation outputs were used to generate four different 
data types (Table 1): (a) data on tree size distribution and spatial 
structure (denoted hereafter as ‘Base’ data), (b) genetic data de-
termining the within- population pedigree (denoted by G), (c) re-
cruitment data (R) and (d) dendrochronological data (D). The base 
data comprised the exhaustive mapping and DBH measurement 
of all individuals above 3 cm DBH. Genetic data comprised geno-
typing of each individual within the population (>3 cm DBH) and 
the resulting pedigree that identifies parental relationships be-
tween these trees. Dendrochronological data comprised annual 
absolute growth rates. Recruitment data comprised the number 
of seedlings in each grid cell in the current year. In Table 1, we 
indicate time investment, material costs and skills required to col-
lect and analyse each data type, based on expert assessments.

To evaluate the type and amount of information provided by 
different combinations of data types we estimated parameters 
using eight data scenarios. A base scenario only included the size 
distribution and spatial structure and we additionally considered 
all possible combinations of the base data with genetic data, den-
drochronological data and recruitment data. These data scenarios 
were denoted by the combination of letters representing the in-
cluded data types.

(9)ys(i, t)=

⎧
⎪⎨⎪⎩

0 if x(i, t)<d1

x(i, t)d2 if x(i, t)>d1,

(10)N(i, t)∼P(ys(i, t)).

(11)ks(i, n)=
1

(2�e2
2
)
×exp

(
−Di,n

e2

)
,

(12)�(i, n, t)=ks(i, n)×N(i, t)×1,

(13)�(i, n, t)=
�(i, n, t)

f1+
∑J

j=1
�(j, n, t)+g2

,

(14)�(0, n, t)=1−
(
�(n, t)+

∑I

i=1
�(i, n, t)

)
.
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2.3 | A Bayesian framework for IBM 
parametrization from different data types

The statistical framework for parameter estimation (Figure 1) com-
bines likelihood- based Bayesian inference with ABC. For the base 
data scenario and scenario G, we estimated all parameters using only 
the ABC method based on summary statistics of the size distribution 
and spatial structure and/or summary statistics of the genetic data. 
When the data scenario included recruitment and/or dendrochro-
nological data, we first estimated parameters related to fecundity 
and dispersal and/or growth with likelihood- based Bayesian meth-
ods. The posterior distributions obtained for those parameters were 
then used as the prior distributions for the subsequent ABC param-
eter estimation. As original priors we used uniform distributions that 
span the realistic ranges for each parameter (Table 2).

2.3.1 | Likelihood- based parameter estimation

Dendrochronological data were used to estimate posterior distribu-
tions for parameters of growth (a1, a2, a3, a4) and competition (b1, b2). 
The data comprised the growth increment yg (i, t) that were recorded 
for each living tree i in all years t and the sizes x(i, t) (calculated as 
summed growth increments). The likelihood of the observed growth 
increment yg (i, t) was calculated from a log- normal distribution 
log(yg (i, t)) ∼ N(�g (i, t), a4) where parameter a4 is the standard devia-
tion and �g (i, t) is the expected growth (on a log- scale) predicted ac-
cording to Equation (1).

Recruitment data were used to estimate posterior distributions 
for parameters of fecundity (d1, d2), seed dispersal (e2) and seed im-
migration (g2). The data comprised the recorded number of seed-
lings per grid cell n in the last simulated year Zn. The likelihood of 
the observed number of seedlings Zn was calculated from a Poisson 
distribution Zn ∼ P(

∑
I
i= 1

�(i, n) + g2) where parameter g2 is the 
contribution of immigrant seeds to the seed pool and �(i, n) follows 
Equation (12).

Likelihood- based parameter estimation used the rjags package 
(Plummer, 2009). Three independent chains with three different ini-
tial conditions were run in parallel using the snow and dclone pack-
ages (Sólymos, 2010; Tierney et al., 2016). The chains were run for 
50,000 iterations to reach convergence, as verified with the Gelman 
Rubin (1992) convergence diagnostic (95% quantile of potential scale 
reduction factor below 1.02).

2.3.2 | Approximate Bayesian computation

For ABC, we sampled 100,000 parameter combinations from the 
prior distributions and simulated the model for each parameter 
combination (Lamonica et al., 2021). Subsequently, we computed 
summary statistics for each simulated population and compared 
them to the summary statistics calculated from the data. Five hun-
dred parameter combinations were accepted and the posterior 

distributions were drawn using the local linear regression of the 
abc package (Csilléry et al., 2012). For size distribution and spatial 
structure (Base), we computed six summary statistics: the basal 
area, the standard deviation and 9th decile of size distribution, 
tree density, a clumping index (standard deviation of tree density 
distribution in 16 m2 plots), the coefficient of the regression of 
individual size against the mean of the distances to neighbours 
divided by neighbour sizes. For genetic data (G), we computed 
eight summary statistics: the mean distance between offspring 
and mother trees, the mean distance between father and mother 
trees, the allometric exponent of the offspring number– size re-
lationship, the percentage of local mother trees, the percentage 
of local father trees, the mean maternal and paternal sibship size 
(both computed with the pedantics package Morrissey & Wilson, 
2010) and a genetic relatedness index (non- zero F, computed with 
the pedantics package).

2.4 | Evaluation

To compare data scenarios in terms of predictive accuracy, we used 
six variables characterizing the population state: the basal area, the 
population density, the standard deviation of size, the allometric ex-
ponent of the offspring number– size relationship and the propor-
tions of local mothers and fathers. Using the posterior distributions 
for each data scenario, as well as the true parameter values and 
the prior distributions, we computed these variables after 70 years 
of model simulation. We also compared data scenarios in terms of 
the accuracy of forecasts into the future. To this end, we simulated 
population dynamics for 40 additional years (from 70 to 110 years, 
starting with the ‘true’ population structure). We then computed the 
above- mentioned six variables using the posterior distributions for 
each data scenario, the true parameter values and the prior distri-
butions. As measures of the information content of each data sce-
nario, we then calculated the standard deviation of forecast state 
variables and their bias compared to the ‘true’ future population 
state. To assess how much information each data scenario contains 
on individual parameters, we also calculated the standard deviation 
of posterior parameter distributions and their bias (compared to true 
parameter values).

3  | RESULTS

3.1 | Parameter estimation

The combination of all data types (DGR) leads to precise and ac-
curate estimates of most model parameters (Figure 2, Supporting 
Information Table A1). The exception is parameters describing adult 
mortality (c1 and c2) and mean pollen dispersal distance (e1), for 
which posterior distributions were rather wide. The posterior of the 
inverse seedling survival rate (f1) was narrow but biased. The base 
data by themselves provided little information on model parameters, 
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leading to posteriors that were just slightly narrower than the prior 
distributions.

With genetic data (G), we obtained more precise estimates for 
size at maturity d1 and immigration parameters (g1 and g2) than the 

base scenario. Additionally, uncertainties were slightly reduced for 
growth parameter a2 and for competition b1. Dendrochronological 
data (D) lead to very precise and accurate estimates for all growth 
and competition parameters (a1, a2, a3, a4 and b1, b2). Uncertainties 

F I G U R E  2   Posterior distributions of model parameters obtained under different data scenarios (Base: only size distribution and spatial 
structure, G: base plus genetic, R: base plus recruitment, RG: base plus recruitment plus genetic, D: base plus dendrochronological, DR: base 
plus dendrochronological plus recruitment, DG: base plus dendrochronological, plus genetic, DRG: all data). The blue lines represent the 
‘true’ values of each parameter that were used for data simulation. See Table 1 for parameter definitions
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were also reduced for pollen and seed immigration (g1 and g2). 
Recruitment data (R) only informed on seed fecundity (d2) and seed 
dispersal (e2).

Combining genetic and dendrochronological data (DG) improved 
the estimation of parameters related to immigration, and to seed 
fecundity and dispersal. The combination of genetic and recruit-
ment data (RG) reduced uncertainties on immigration parameters. 
Combining recruitment and dendrochronological data (scenario DR) 
did not improve estimates (except for the inverse seedling survival 
rate f1).

3.2 | Forecasts of future dynamics

Forecasts of future population state are one way to summarize the 
information content of data scenarios across all model parameters. 
All data scenarios yielded largely unbiased forecasts of population 
density (Figures 3 and 4, Supporting Information Table A2) as well 
as the size and genetic structure of populations 40 years into the fu-
ture (Figure 3). Forecasts of density (number of trees and basal area) 
and size structure (size distribution and offspring size relationship) 
were least uncertain when dendrochronological data were used for 
model parametrization (Figures 3 and 4). Forecasts of the propor-
tion of local mothers and fathers became more certain when using 
genetic data in combination with other data. However, forecasts of 
the proportion of local mothers were also improved by using only 
dendrochronological data. In contrast, recruitment data helped little 
to reduce forecast uncertainty (Figures 3 and 4). We found similar 
results for reconstructions of past population dynamics (from 0 to 
70 years, Supporting Information Figures A1 and A2). Overall, fore-
casts of future dynamics showed less uncertainty than predicted 
past dynamics, presumably because forecast simulations were 
initialized with the exact same starting point (the ‘true’ population 
structure in year 70) and were only run over 40 years.

4  | DISCUSSION

In this study, we developed a framework for parametrizing an IBM for 
establishing tree populations from different data types by combin-
ing ABC and likelihood- based estimation methods (Figure 1). When 
comparing the value of different data types for model parametri-
zation, we found that dendrochronological data were particularly 
informative although genetic and recruitment data also improved es-
timates of certain parameters (Figure 2). Reliable forecasts of future 
population structure and density could be obtained from dendro-
chronological and genetic data, whereas recruitment data contrib-
uted little to improve forecasts (Figures 3 and 4). This holds not only 
for population states at the time horizon of forecasts (Figure 3) but 
also for the temporal dynamics up to this time point (Figure 4).

Data collected at a single time point can thus be remarkably in-
formative about the past and future dynamics of tree populations. 
This is because (a) the considered data contain information about 

past population dynamics (albeit being collected at a single time point) 
and (b) these data inform about the entire history of the considered 
establishing populations. Under these conditions, most model pa-
rameters could be estimated with little bias and variance (Figure 2). 
However, even when combining all data types we did not obtain reli-
able estimates of adult mortality and seedling survival (Figure 2). This 
is because these parameters partly compensate each other in their 
effect on the summary statistics used for model parametrization, 
causing moderately strong correlations between parameter estimates 
(Supporting Information Figure A3). Thus, different parameter com-
binations lead to the same population state, for example, a high adult 
mortality combined with a high seedling survival rate would lead to 
similar size distribution and spatial structure as lower adult mortality 
and lower seedling survival rate. Another limit to inference occurs for 
mean pollen dispersal distance e1. This parameter could not be esti-
mated reliably because the data were not informative— only few fa-
ther trees from the population produced offspring— and the true value 
(50 m) is close to the side length of the study site (55 m). Moreover, 
the sensitivity of summary statistics to this parameter was quite low.

We obtained reliable forecasts of population dynamics even 
though the marginal posterior distributions of adult mortality and 
seedling survival parameters were wide (Figures 3 and 4, Supporting 
Information Figures A1 and A2). This is due to the above- mentioned 
correlation of parameter estimates. It may not be necessary to re-
solve this trivariate parameter uncertainty if one is interested in 
forecasting population dynamics rather than learning about specific 
parameters (Sirén et al., 2018). However, if one needs precise esti-
mates of individual parameters, certain data types are more valuable 
than others. In our study, for instance, dendrochronological data 
lead to good forecasts, but provided almost no information on fe-
cundity parameters, whereas recruitment data did.

When designing data collection to infer the dynamics of establish-
ing tree populations, dendrochronological data are the first choice (in 
addition to data on tree size distribution and spatial structure) given 
its high information content and the relatively low costs in terms of 
time, money and skills (Table 1). Combining either recruitment or ge-
netic data with dendrochronological data informed fecundity, disper-
sal, recruitment and/or immigration processes, thus reducing further 
uncertainty. This combination of data types leads to better forecasts 
of population structure because different data types informed on dif-
ferent processes. Yet when focusing on a single parameter related to 
a given progress, combining data types did not lead to a better esti-
mate than using only the data type related to the process.

Our analysis permits to steer future data collection depending 
on (a) data costs and available skills, (b) processes and parameters 
of interest and (c) available prior information and knowledge on the 
study system. For instance, if the studied population is known to 
be very isolated or if the seed dispersal distance is unknown, it may 
be most informative to complement dendrochronological with re-
cruitment data. On the contrary, if parenthood relationships are of 
major interest, it may not be necessary to collect recruitment data 
in addition to genetic data because the latter will provide enough 
information on parenthood.
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We considered a ‘best- case scenario’ of data- driven modelling, 
in which (a) each data type is sampled exhaustively, (b) there are no 
measurement errors and (c) the ‘true’ model is fitted to the data. We 
chose this best- case approach since it enabled us to quantify the 

potential value of each data type. Exhaustive sampling of genetic 
data is necessary since it may allow to retrieve the complete pedi-
gree (Jones & Arden, 2003). The ability to reconstruct parentage and 
accommodate genotyping errors depends on genetic data resolution 

F I G U R E  3   Forecasts of the state of tree populations 40 years into the future. Forecasts of eight population characteristics were 
generated by an IBM parametrized with different data scenarios (see Figure 2), from the prior distribution of parameters (grey) and with the 
‘true’ parameter values used for data simulation (blue). Each boxplot represents variation in forecasts for 500 replicate simulations of the 
stochastic simulation model
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(number of single nucleotide polymorphisms or multi- allelic micro-
satellites) and on the method used to reconstruct parentage (ex-
clusion, relatedness- based or likelihood- based methods) (Huisman, 
2017). Genomics is a rapidly moving field, both in terms of resolution 
and data analysis, so that one can expect the quality of reconstructed 
pedigrees to get closer to the best- case scenario considered here. 
Exhaustive sampling of dendrochronological data is also necessary 
since it allows to infer past competition neighbourhoods (Lamonica 
et al., 2020). Importantly, the exhaustive sampling of genetic and 
dendrochronological data is feasible for populations comprising sev-
eral hundreds of individuals (Gerzabek et al., 2020; Lamonica et al., 
2020). Concerning recruitment data, censusing the entire patch area 
might be too time- consuming, so that one would rather sample a 
fraction of the patch. Yet it is possible to obtain reliable estimates of 
spatial recruitment parameters by sampling < 1% of the patch area 
(Schurr et al., 2008).

The estimation of IBM parameters with summary statistics- based 
ABC methods can lack efficiency (Hartig et al., 2014). Here, we found that 
the two- step combination of direct likelihood- based estimation and ABC 
provided very informative posterior distributions of certain parameters. 
Specifically, likelihood- based methods provided posterior distributions 
for submodels, which were then used as priors for ABC estimation of the 
full IBM. We obtained very good estimates of growth and competition 
parameters because dendrochronological data directly result from the 
growth- competition process. In contrast, other data types result from the 
combination of several processes, which increases uncertainty of individ-
ual parameter estimates but means that these data inform about a wider 
range of parameters (for instance, genetic data provide modest informa-
tion about growth, competition, adult mortality and fecundity).

5  | CONCLUSIONS

Inferring past dynamics and parametrizing predictive models from 
data collected at a single time point is a prerequisite to forecast 
the population dynamics of long- lived organisms. This is because 
time is lacking to monitor long- term dynamics of these organisms, 
especially under global change. In the case of trees, dendrochro-
nological and genetic data make it possible to reconstruct not only 
individual growth trajectories but also past population dynam-
ics. While tree rings are specific to trees in climates with annual 
growth cycles, various other sessile organisms have morphological 
structures that can serve the same purpose, for instance annual 
growth rings in herb roots (Dietz & Ullmann, 1998), coral growth 
rings (Marschal et al., 2004) and annual stem growth increments in 
certain shrubs (Carlson et al., 2011). Annual growth increments can 
also be inferred from the otholiths of fish (Rountrey et al., 2014). 
With annual growth data, one can reconstruct individual growth 
trajectories that can help to infer population dynamics. The pre-
sented framework for data- driven modelling and forecasting of tree 
population dynamics could thus be modified to describe the popu-
lation dynamics of other ecologically important long- lived sessile 
organisms (whereas application to mobile organisms such as fish 
would require major modifications in submodels for competition, 
reproduction and dispersal). Moreover, it will be exciting to extend 
the framework beyond population dynamics to the modelling of 
community and range dynamics (Evans et al., 2016; Pagel et al., 
2020; Schurr et al., 2012), and the forecasting of invasion dynamics 
and species range expansions (Hastings & Wysham, 2010; Nathan 
et al., 2011).

F I G U R E  4   Forecasts of tree density (top) and basal area (bottom) over a time horizon of 40 years. Columns represent different data 
scenarios (see Figure 2). Lines represent medians and areas the 95% credibility intervals of forecasts obtained for prior distributions (light 
grey), posterior distributions under the given data scenario (orange) and ‘true’ parameter values used for data simulation (blue)
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