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Forests provide fundamental ecosystems services to mitigate climate 
change and support biodiversity but they are seriously threated by 
local human pressures and the outcomes of global climate change 
(Trumbore et al., 2015). According to FAO estimates, some 420 mil-
lion hectares of forest have been lost since 1990, although the rate 
of deforestation has decreased over the past three decades from 
16 × 106 ha/year in the 1990s to 10 × 106 ha/year from 2015 to 2020 
(FAO, 2020). There is, however, broad agreement that deforestation 
still prevails in the tropics, whereas extratropical regions tend to gain 
in forest cover as rural lands become depopulated, abandoned and 
recolonized by forest species (Chazdon, 2014; García et al., 2014). 
Consequently, the proportion of second-growth forests—that is, forest 
or woodland areas that have re-established after the complete loss of 
the original tree cover—is rapidly increasing across both hemispheres.

The recent tree cover increment in many regions of the world is 
partly a result of extensive tree planting programs triggered by ambi-
tious international initiatives to reduce deforestation and forest deg-
radation and to restore forest ecosystem's functions, such as Global 
Partnership on Forest and Landscape Restoration, REDD + or the Bonn 
Challenge (Chazdon, Gutierrez, et al., 2020; Corbera & Schroeder, 2011; 
Laestadius et al., 2015; Leipold et al., 2016). These initiatives have largely 
focused on low-income countries of the Southern hemisphere, where 
deforestation rates remain high (Curtis et al., 2018; Song et al., 2018). 
Notwithstanding, recent programs such as the European Green Deal 
(European Commission, 2019) similarly pursue to increase the amount 
and quality of forests for mitigating climate change impacts and restoring 
ecosystems and biodiversity in the frame of Europe's transition towards 

a circular and CO2 neutral economy. The burgeoning political engage-
ment reflects rapidly growing economic and societal concerns upon 
the impacts of recent climate change on extant forests (Hanewinkel 
et al., 2013; Seidl et al., 2014). Forests are increasingly valued as much 
for their diverse ecological services provided to local communities 
(Martín-Forés et al., 2020) and their role in mitigating climate change 
as for the profitable industry generated by wood production (Bastin 
et al., 2019; Gamfeldt et al., 2013). Strategies to attain healthy, diverse 
and multifunctional second-growth forests include a diverse array of 
actions that vary from passive restoration approaches that implement 
cost-effective interventions to spur autonomous tree regeneration (e.g. 
Benayas et al., 2008) to active reforestation approaches that can involve 
extensive surfaces planted with millions of young trees (afforestation).

The high-economic costs of large-scale tree plantation pro-
grams, as well as their eventual social and environmental impacts 
(Bullock et al., 2011; Fagan et al., 2020; Holl & Brancalion, 2020; 
Lamb et al., 2005) render passive forest restoration as an indispens-
able management tool in many regions of the world. In addition, the 
ecological success of restoration actions is commonly higher with 
approaches based on natural forest regeneration than those using 
active restoration (Crouzeilles et al., 2017). And although passive res-
toration initiatives usually develop locally, their upscaled effects can 
become quite significant (Crouzeilles et al., 2020). Despite all these 
proven advantages, our practical knowledge of how to use the nat-
ural regeneration potential of tree populations and communities for 
fostering forest restoration remains incomplete (Hampe et al., 2020). 
For example, long-term empirical studies investigating the 
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effectiveness of different restoration strategies are scarce and few 
works have systematically compared the success of alternative res-
toration approaches in generating truly multifunctional forests (but 
see Chazdon, Lindenmayer, et al., 2020; Cruz-Alonso et al., 2019).

This Special Feature compiles six review and original research ar-
ticles with the aim of synthesizing and deepening our understanding 
of the ecology and functioning of forest recovery in different parts 
of the world. Three contributions provide empirical evidence on the 
effectiveness of low-cost and nature-based solutions to enhance 
forest regeneration and expansion, such as applied nucleation and 
induced seed dispersal. They highlight the instrumental role of seed 
dispersal interactions in enhancing tree establishment in neotropical 

ecosystems. A further study on a major European forest tree reveals 
that second-growth forests may rapidly attain high levels of functional 
diversity while exhibiting increased tree growth as a legacy effect of 
former land uses. Finally, a Policy Direction paper argues for the need 
to consider also a number of ecosystem disservices (such as fire haz-
ards or biotic invasions) associated with the expansion of secondary 
forests while a Commentary paper argues for reconsidering plans for 
large-scale massive tree planting. Overall, these contributions shed 
light on important knowledge gaps on the regeneration and restoration 
of tropical, mediterranean and temperate forests, and provide evi-
dence-based guidelines to design effective forest management plans. 
These guidelines are articulated around three main topics (Figure 1).

F I G U R E  1   Schematic representation depicting restoration alternatives (1–6) that drive forest regeneration and expansion in rural 
abandoned lands (a) typically surrounded by patches of different types of forests (b and c) and areas of productive agricultural lands with 
orchards, croplands and hedgerows (d). These restoration and forest recovery alternatives are documented and discussed in this Special 
Issue. Spontaneous forest regeneration (1–4) might occur from adjacent mature forests (1) when propagules are dispersed by wind (blue 
arrow) or by frugivorous vertebrates (white arrows; 2–4). Seed dispersal by frugivores fosters forest regeneration locally (2–4), overcoming 
seed limitation and enhances seed deposition and establishment of multiple animal-dispersed plants. Some landscape structures, such as 
dead trees where birds typically perch (3) or ponds and lakes that vertebrates visit to drink (4), trigger the arrival of propagules (red dots) 
that nucleate the formation of new forest patches (2–4). Additionally, feeding stations (5) can induce seed dispersal to effectively overcome 
seed limitation and exploit the different services provided by frugivores to animal-dispersed plants including enhanced seed germination, 
seed deposition in suitable sites and dispersal of propagules to remote locations. Where environmental conditions hamper seed arrival and 
establishment, local artificial afforestation (6) can overcome both limitations. Ultimately, all these cost-effective nature-based solutions can 
help restore diverse and resilient secondary forests. Biotic processes, such as pollination and seed dispersal link long-established forest (b 
and c) and secondary forests (1–5), and latter may act as a cost-effective species reservoir for the (re)colonization of long-established and 
managed forests. This mutual interdependent dynamic is represented in the picture as a double-arrowed line. At a regional scale, policy 
initiatives should promote multifunctional farming systems and sustainable forest management to maximize the ratio of ecosystem services 
versus disservices delivered by secondary forests (7) 
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1  | APPLIED NUCLE ATION AND INDUCED 
SEED DISPERSAL ARE COST-EFFEC TIVE 
NATURE-BA SED SOLUTIONS THAT C AN 
SPEED UP FOREST RECOVERY AND 
E XPANSION

The initial stages of forest recovery are often limited by the ar-
rival of propagules (Cramer et al., 2008) and/or stressful environ-
mental conditions that challenge the successful establishment of 
recruiting plants (Basnou et al., 2016). Applied nucleation is a well- 
established restoration approach that aims to overcome both limi-
tations by mimicking the natural regeneration process where a 
patch of (planted) woody vegetation enhances the deposition of 
seeds and the posterior establishment of other individuals and spe-
cies (Benayas et al., 2008). Previous research has shown that spe-
cies composition and ecosystem functioning change through the 
course of forest recovery and expansion, but long-term datasets 
remain scarce (Meli et al., 2017). The paper by Holl et al. (2020) 
summarizes the accumulated impact of applied nucleation, tree 
planting and passive natural regeneration on the flora, fauna and 
ecosystem functioning in plots located in abandoned tropical rural 
lands monitored over a period of 15 years. Notably, both applied 
nucleation and tree planting favoured seed deposition and the es-
tablishment of all floral and faunal taxa surveyed. All metrics of 
taxonomic diversity and tree cover reached higher values in plots 
with nucleated and planted trees compared to unaided natural 
regeneration. Within the nucleation and planting treatments, the 
effect increased proportionally to the size of the patch restored. 
Although both applied nucleation and tree planting speeded up 
forest recovery, the passive restoration approach was 66% less 
expensive. Interestingly, the authors confirm that the success of 
applied nucleation relies on the availability of frugivores in the 
regenerated area. They, hence, conclude that both tree planting 
and applied nucleation are likely to fail in highly defaunated sites 
where animal-dispersed trees are deprived of dispersal services 
(Dirzo et al., 2014). Or, alternatively, in areas with high levels of 
seed predation and/or herbivory where dispersed propagules are 
unlikely to become established (McAlpine et al., 2016). Thus, this 
long-term study reinforces the notion that forest managers should 
consider both the environmental conditions determining tree re-
cruitment as well as the biological processes that amplify plant 
fertilization and recruitment dynamics, such as seed dispersal or 
effective pollination (Farwig & Berens, 2012; Potts et al., 2016).

Animal-mediated seed dispersal during the very initial stage of 
applied nucleation is in the focus of the following paper by Camargo 
et al. (2020), who report on a tree planting experiment in a pasture 
woodland of the Brazilian Atlantic Forest. Comparing plots planted 
with either a wind-dispersed or one of two bird-dispersed species 
with contrasting fruits, they observed great differences in the fru-
givorous bird assemblages and visit rates, as well as in the abundance 
and species richness of the arriving seed rain. One of the bird-dis-
persed tree species attracted a more diverse of frugivores than the 
other. Interestingly, the respective frugivore assemblages of the two 

species differed in their functional traits, and in particular the aver-
age gape width and wing-load of each frugivore assemblage were 
related with differences in the seed rain that arrived under each 
tree species. The study therefore presents solid evidence illustrat-
ing how the choice of tree species for applied nucleation initiatives 
influence the composition and abundance of the seed dispersers it 
attracts and the resulting seed rain. This knowledge can guide forest 
managers with selecting the most effective tree species for applied 
nucleation programs in line with the local disperser assemblages and 
forest restoration targets.

Still focusing on animal-mediated seed dispersal, the third paper 
of this Special Issue (Silva et al., 2020) presents a proof of concept 
and feasibility for a simple and highly cost-efficient technique to re-
inforce forest expansion into abandoned agriculture lands by the so-
called induced seed dispersal. The authors embedded seeds of the 
target tree species for restoration in the pulp of commercial or native 
fleshy fruits that they placed in two feeders in former agricultural 
lands over a period of 2 years. Using camera recordings and seed 
traps, they could identify a relatively diverse frugivore assemblage 
dominated by common generalist species that dispersed a notewor-
thy amount of seeds (>600 seeds per ha and month) of the native 
pioneer tree Cecropia hololeuca. The easy implementation of the pre-
sented technique makes it a suitable candidate to overcome seed 
dispersal limitation issues in small-scale restoration programs. The 
approach can be of special interest in highly disturbed landscapes 
where it can take advantage of the generalist frugivores that typi-
cally remain in such landscapes (McAlpine et al., 2016).

2  | PA SSIVE FOREST REGENER ATION 
RESULTS IN SECONDARY FORESTS WITH 
ENHANCED GROW TH AND RESILIENCE TO 
CLIMATE CHANGE

An overwhelming number of studies show that secondary forests 
can provide relevant ecosystems services such as the regulation of 
nutrients and hydrological cycling, and particularly carbon seques-
tration (Pugh et al., 2019). These results have been related to posi-
tive effects of land use legacies on soil characteristics such as higher 
nutrient availability, mineralization rates and microbial activity, that 
ultimately result in higher tree growth (Vilà-Cabrera et al., 2017). 
Yet, we largely ignore whether long-established and secondary for-
ests also differ in their resilience to climate change-mediated distur-
bances (Alfaro-Sánchez et al., 2019; Elias et al., 2020). Comparing 
secondary and long-established broadleaf forests in NE Spain, 
Espelta et al. (2020) show that secondary forests tend to exhibit 
higher tree species diversity, tree growth and reduced insect her-
bivory while they do not differ from long-established forests in their 
sensitivity to drought. These results highlight that forest managers 
should consider promoting tree diversity in temperate forests as a 
tool for simultaneously enhancing provisioning ecosystem services 
(ES) such as wood production, by means of enhanced tree growth, 
and forest resistance to biotic disturbances (e.g. insect pests) with 
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no effects on their response to drought. Moreover, the higher di-
versity observed in unmanaged secondary forests points to them 
as a cost-effective species reservoir for the (re)colonization of less 
diverse long-established forests, suggesting that planning their in-
clusion at the landscape level could be a helpful strategy to increase 
forest landscape resilience (Messier et al., 2019).

3  | POLICYMAKERS SHOULD CONSIDER 
E VIDENCE-BA SED STR ATEGIES THAT 
INCLUDE PILOT STUDIES ,  LONG -TERM 
MONITORING AND THE POSSIBILIT Y OF 
ECOSYSTEM DISSERVICES

While the provision of ES delivered by secondary forests has been 
extensively acknowledged, the potential existence of ecosystem dis-
services (EDS) has been less investigated. Yet forest expansion may 
also promote landscape homogenization, increase the spreading 
of biotic (e.g. pests) and abiotic (e.g. wildfires) disturbances and re-
duce water runoff (Castro-Díez et al., 2019). In addition, the change 
from a cultivated landscape towards abandoned land is perceived as 
a ‘loss of territory’ and regarded as a problem by some local stake-
holders (Frei et al., 2020). These negative outcomes from secondary 
forests may be particularly relevant in regions such as the northern 
rim of the mediterranean Basin where extensive forest expansion 
is occurring largely as a result of rural abandonment. In their Policy 
Directions article, Varela et al. (2020) summarize the main ES and 
EDS linked to the establishment of secondary forest in the Euro-
mediterranean region, and make policy recommendations to reduce 
environmental and economic uncertainties and maximize the ES/
EDS ratio of secondary forests expansion. These recommendations 
include: (a) favouring a climate-smart policy leading to fire-resistant 
landscapes developed after enhancing value chains that stimulate ac-
tive forest management; (b) adopting a territorial perspective beyond  
forest- and farm-based measures and payments; and (c) redirecting 
the focus and direct payments of the Common Agricultural Policy 
(CAP) to multifunctional farming systems and sustainable forest 
management. This Policy Directions article shows that programs 
supporting conservation require evidence-based and informed poli-
cies to avoid conflicting outcomes among stakeholders. For example, 
the rise in the demand of forest services and products, as natural cli-
mate solution initially designed to achieve climate neutrality by 2050, 
has increased forest harvest area (49%) across Europe since 2015 
compromising the goals of attaining sustainable forest management 
(Ceccherini et al., 2020).

To offset long-term deforestation world-wide, there are at least 
three ongoing initiatives aiming to ensure the environmental socie-
tal well-being of the planet by planting 1 trillion trees (Brancalion & 
Holl, 2020). These initiatives should be long-term commitments to re-
store forest cover, ES and biodiversity but frequently their success is 
merely evaluated as the number of planted trees. Brancalion and Holl 
(2020) advocate for evidence-based, mixed and multifaceted strategies 
to achieve socio-economic and environmental targets, namely: (a) first 

and foremost, addressing the drivers of deforestation; (b) integrating 
decision-making across spatial scales; (c) applying adaptive manage-
ment across a long timeframe; (d) adopting a holistic view of the eco-
system to be restored to avoid a tree-focused approach and consider 
alternative solutions for non-forested environments; and (e) involving 
stakeholders at all stages of the program, including initial planning and 
the coordination of different land uses. They advocate that, ultimately 
tree planting initiatives should take into account the impact of climate 
change on forest regeneration dynamics and the ability of planted 
trees to thrive under new environmental conditions. The authors point 
out that recent experiments and previous foiled tree planting initia-
tives teach us that mixed strategies should be strongly considered 
according to the local needs and targets. Therefore, a large-scale re-
covery plan, authors state, should combine tree planting (Brancalion & 
Holl, 2020), passive reforestation (Chazdon, 2014), applied nucleation 
(Holl et al., 2020) and more bold actions such as assisted migration, if 
required (Pedlar et al., 2012). Altogether, this forward-thinking guid-
ance should assist in planning, designing, implementing and monitor-
ing tree planting strategies and more broadly forest restoration plans. 
Robust and integrative forecast modelling efforts would ultimately 
assist in prioritizing most effective interventions by evaluating the 
spatial, temporal and economic efforts required to achieve forest re-
generation locally and at global scales under different socio-economic 
and environmental scenarios (Montoya et al., 2020).
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